

15 January 2024

Warm-up: List all angles

Fact: $e^{\theta i} = \cos(\theta) + \sin(\theta) i$

 $re^{\theta i} = r\cos(\theta) + r\sin(\theta)i.$

Multiplying both sides of this by r gives Writing a complex number as e^{-i} is called **exponential form**.

Example: $4\sqrt{3} + 4i = 8\cos(\frac{\pi}{6}) + 8\sin(\frac{\pi}{6})i = 8e^{(\pi/6)i}$ rectangular form

polar form

exponential form

In general, What does this mean visually? multiply magnitudes, add angles

Let's draw a dot \cdot at *zw* below.

 $(re^{\theta i}) \cdot (se^{\phi i}) = (rs)e^{(\theta + \phi)i}.$

How is \overline{z} calculated?

Complex conjugate

 $re^{\theta i} = re^{-\theta i}$

Task: For $z = 5\sqrt{3} - 5i$ and $w = 5e^{(\pi/6)i} = 5e^{(30^\circ)i}$, calculate $z \cdot \overline{w}$.

How easy it is to do calculations in rectangular form vs. exponential form?

real part
imaginary part
magnitude
argument
conjugate
sum/difference
product
quotient
powers

	a+bi	re¢i
Z		
arg(z)		
Z		
z ± w		
ZW		
z/w		
zn		

What numbers z satisfy $z^2 = 1?$

Answer: 1, -1

What are all the complex numbers z that satisfy $z^4 = 1?$ Note that $z^2 = 1$ or $z^2 = -1$. Answer: 1, -1, i, -i

What are all the complex numbers z that satisfy $z^3 = 1$?

For any natural number n, the solu
• $z = e^{(2\pi/n)i} \leftarrow Call this w.$
• $z = e^{2 \cdot (2\pi/n)i} = \omega^2$
• $z = e^{3 \cdot (2\pi/n)i} = \omega^3$
$ z = e^{(n-1) \cdot (2\pi/n)i} = w^{n-1} $
• $z = e^{n \cdot (2\pi/n)i} = 1.$
These are called the <i>n</i> th roots of u

utions to $z^n = 1$ are exactly

In some ways, real numbers are better: Physical measurements

Ordered: always x < y or $x \ge y$ 0

In some ways, complex #s are better: \circ nth roots – always exactly n of them

- Rotation and trig functions
- Polynomials ...

Not true for real $(example: x^2 + 1 = 0)$.

REAL VS. COMPLEX.

The Fundamental Theorem of Algebra (ver. 1)

For any non-constant polynomial f(x), there is at least one complex solution to f(x) = 0.

A polynomial in the variable x is a function of real numbers that can be described by an expression of the form

where $n \ge 0$ is an integer and the e (called the coefficients).

A real polynomial is one where every coefficient is a real number.

A complex polynomial is one where every coefficient is complex. Real numbers are complex numbers (a + 0i), so every real polynomial is also a complex polynomial.

CLUMCOMMELLS

$$\cdots + \widehat{\otimes} x^2 + \widehat{\otimes} x + \widehat{\ominus},$$

emoji are real or complex numbers

Examples of polynomials:

• $5x^3 - 27x + \frac{3}{2}$ $\sqrt{82x^5-9x}$ so it is a polynomial. o 12

Examples that are *not* polynomials: $\bullet x^{1/2}$

- $5x^2 + 3 + x^{-1}$
- \circ $\cos(x)$

• ax + b if the variable is x • $7t^2 - 8t + 1$ if the variable is t

The terms of a polynomial are the expressions that are added together or subtracted.

• Example: $f(x) = x^5 + 6x^3 - 4x + 8$ has four terms: • x^5 is the "first term" and the "X to the fifth term" • $6x^3$ is the "second term" and the "X cubed term" • -4x is the "third term" and the "X term" 8 is the "fourth term" and the "constant term"

The order of the terms doesn't matter. Some people prefer to write $8 - 4x + 6x^3 + x^5$.

The degree of a polynomial is the highest power of the variable that appears in the polynomial. We write deg(f) for the degree of f(x). "constant" Degree 0 example: 9 0 "Linear"* Degree 1 example: x + 20 Degree 2 example: $2x^2 - 5x - 12$ "quadratic" "cubic" 0 Degree 3 example: $-8x^3$ 0 Degree 4 example: $x^4 - 7x + 1$ "quartic" 0

A polynomial is called monic if its highest-degree term has coefficient 1. • Example: $x^3 - \frac{2}{5}x + 8$

We can add two polynomials. $(4x^2 - 3x) + (x^3 + x^2 + 3x + 8) = x^3 + 5x^2 + 8$ We can subtract two polynomials. $(4x^2 - 3x) - (x^3 + x^2 + 3x + 8) = -x^3 + 3x^2 - 6x - 8$ We can multiply two polynomials. $(4x^2 - 3x)(x^3 + x^2 + 3x + 8) = 4x^5 + x^4 + 9x^3 + 23x^2 - 24x$ We can try to divide two polynomials, but sometimes the result is not a polynomial (for example, 1/x is not a polynomial).

Question: What can we say about deg(f + g) and $deg(f \cdot g)$? $(4x^2 - 3x) + (x^3 + x^2 + 3x + 8) = x^3 + 5x^2 + 8$ $(4x^2 - 3x) + (-4x^2 + 7) = -3x + 7$

 $(4x^2 - 3x)(x^3 + x^2 + 3x + 8) = 4x^5 + x^4 + 9x^3 + 23x^2 - 24x$ = $4x^{2}(x^{3}+x^{2}+3x+8) + (-3x)(x^{3}+x^{2}+3x+8)$ $= (4 \times 5 + \cdots) + (-3 \times 4 + \cdots)$ $x^a \cdot x^b = x^{a+b}$

 $deg(f \cdot g) = deg(f) + deg(g)$ exactly.

deg(f+g) is \leq the maximum of deg(f) and deg(g).

The number c is a zero of the polynomial f if f(c) = 0. A zero of a polynomial is also called a **root** of the polynomial.

Sometimes we are interested in particular types of numbers as zeros. • Example: $2x^6 - 3x^5 - 21x^4 + 56x^3 - 26x^2 - 245x + 525$ has

- - Integer root: -3
 - Rational roots: -3 and $\frac{5}{2}$

• Real roots: $-3, \frac{5}{2}, \sqrt{7}, \text{ and } -\sqrt{7}$ These are real numbers that are also rational. • Complex roots: $-3, \frac{5}{2}, \sqrt{7}, -\sqrt{7}, 1+2i$, and 1-2iThese are complex numbers that are also real.

The number c is a zero of the polynomial f if f(c) = 0. A zero of a polynomial is also called a **root** of the polynomial.

We often use the variable z when we care about complex roots. For example,

• "What are the zeros of $x^2 + 1$?" Depending who you ask, the answer could be either "*i* and -i" or "there are no zeros". • "What are the zeros of $z^2 + 1$?" Answer: i and -i.

The number c is a zero of the polynomial f if f(c) = 0. A zero of a polynomial is also called a **root** of the polynomial.

The Fundamental Theorem of Algebra (ver. 1)

Every non-constant complex polynomial has at least one root.

